2 **Problem Overview**

3 The student is given a portion of the graph of the continuous function f (shown below) which consists of

4 two line segments and a quartercircle. The function f is defined on the interval $-6 \le x \le 5$. The student

is told that the quartercircle is centered at (5,3) and the point $(3,3-\sqrt{5})$ lies on the graph.

The graph of f

7 Part a

6

8 Students were told that $\int_{-6}^{5} f(x) dx = 7$ and were asked to show the work that leads them to the value of

$$9 \int_{-6}^{-2} f(x) \, dx.$$

10 **Part b**

11 Students were asked to evaluate $\int_{3}^{5} (2f'(x) + 4) dx.$

12 **Part c**

13 Students were given a new function g defined by $g(x) = \int_{-2}^{x} f(t) dt$ and were asked to find the absolute

14 maximum of g on the interval [-2, 5].

15 **Part d**

16 Students were asked to evaluate $\lim_{x\to 1} \frac{10^x - 3f'(x)}{f(x) - \arctan x}$.

17 Comments on Student Responses and Scoring Guidelines

18 Part a

- 19 The problem was about area properties of definite integrals and three points were available for the stu-
- 20 dent. Students had to show that they could handle these properties by writing some equivalent form of the
- 21 statement

22
$$\int_{-6}^{5} f(x) dx = \int_{-6}^{-2} f(x) dx + \int_{-2}^{5} f(x) dx.$$

- 23 Showing this property in some form earned the first point. To award the first point, the Readers were given
- some leeway with notation: missing dxs were ignored since the presence of an equals sign or the addition
- 25 or subtraction of a second integral was assumed to close the first integral.
- Then students had to use the fact that $\int_{-6}^{5} f(x) dx = 7$ along with the computation of the areas of triangles
- 27 and a square minus a quartercircle to compute $\int_{-2}^{5} f(x) dx = 11 \frac{9\pi}{4}$. Correctly computing the areas
- 28 earned the second point. The area values did not need to be simplified; many correct area values were left
- 29 unsimplified and earned the point. However, a student simplifying a correct expression to an incorrect final
- 30 answer did not earn the point. Finally, they had to show that the definite integral requested was equal to
- 31 $-4 + \frac{9\pi}{4}$, and this earned them the third point.
- 32 If the area under the graph was computed incorrectly, the student did not earn the second point, but was
- 33 still eligible to earn the third point, with one exception: The student had to show that the quartercircle
- 34 was handled by taking the area of the square and subtracting the area of the quartercircle. This should be
- 35 expressed as $9 \frac{9\pi}{4}$. Any lack of consideration for this (i.e., writing $\frac{9\pi}{4}$ by itself, or writing $\frac{9\pi}{4} 9$, or π
- 36 missing completely from the computation) did not earn the second or third point. If a student used 3.14 for
- 37 π , the student did not earn the second point but could still earn the third (although this did not happen as
- 38 students did not subsequently report an answer correct to three decimal places).
- 39 A minimal response which earned all three points is the following.

$$7 - \left(11 - \frac{9\pi}{4}\right)$$

- 41 This demonstrates a sufficient knowledge of the properties of definite integrals; the area in the graph is
- 42 computed correctly; and the final correct answer is reported.

43 **Part b**

- 44 This problem could earn the student two points. The first point is earned by demonstrating appropriate use
- of the Fundamental Theorem of Calculus. Writing an antiderivative of f'(x) as f(x) and then evaluating
- 46 it as f(5) f(3) was all that had to be done to earn this first point. The second point was earned for
- 47 doing everything else about this problem correctly: handling the integration of 4 from x = 3 to x = 5, the
- 48 coefficient of 2, computing the values of f(5) and f(3), and any simplification of the final answer.

49 A minimal response which earned both points was the following.

$$50 20 - \left(6 - 2\sqrt{5} + 12\right)$$

51 This shows that the appropriate antiderivatives were found and evaluted.

52 Part c

- Three points are available to the student in part (c). To earn the first point, the student had to show knowl-
- edge once again of the Fundamental Theorem of Calculus by writing g'(x) = f(x), by writing g' = f,
- or by expressing this relationship in words. To earn the second point, the student must indicate, among a
- 56 list of possible x-coordinates for extrema, that one of those x-coordinates is x = -1. Any indication of
- 57 the consideration of x = -1 earned the point, such as writing x = -1 anywhere in their work for part (c),
- including -1 in a list of critical points, writing g(-1), or writing $\int_{-2}^{-1} f(t) dt$.
- 59 To earn the third point, the student had to declare the correct maximum value, which is the area under the
- graph, $11 \frac{9\pi}{4}$. This maximum value had to be clearly indicated by the student; saying "the maximum
- occurs at x = 5" or reporting the ordered pair $(5, 11 \frac{9\pi}{4})$ did not earn the third point. Importing incorrect
- areas from part (a) were accepted as long as the incorrect area was greater than $g(-1) = \frac{1}{2}$. However, a
- student who did not explicitly rule out $x = \frac{1}{2}$ as a possible maximum did not earn the third point.

64 Part d

- To earn the only point available, the student just had to plug in x = 1 and evaluate f'(1). Since f'(1) can
- be obtained from the graph as being equal to 2, a correct response with no simplification such as

$$\frac{10^1 - 3 \cdot 2}{1 - \arctan 1}$$

- 68 earned the point. There was no need to evaluate arctan 1. A student who was "over-zealous" with limit
- 69 notation and wrote

$$\lim_{x \to 1} \frac{10^1 - 3 \cdot 2}{1 - \arctan 1}$$

- 71 did not earn the point, as this student still has not reported the value of the limit. If arctan 1 was evaluated,
- 72 it must be $\frac{\pi}{4}$, not 45°, as the inverse trigonometric functions are defined only with ranges in radians. A
- 73 student using degrees (or making simplification errors) lost the only point available.

74 Observations and Recommendations for Teachers

- 75 (1) Students should know how to find areas of simple geometric figures. Many students could not recall
- 76 the area of a circle. Some students could not find the area of a triangle. Give students plenty of practice
- vith graphical problems where they need to calculate the areas of triangles, trapezoids, semicircles, and
- 78 quartercircles. Students should also understand that area is calculated between the curve and the x-axis.
- Many students calculated areas between the curve and the line y = -1. Some calculated areas above the

- 80 curve. Others attempted to count the grid squares and estimate the area. (Any such estimations did not
- 81 earn points in part (a).)
- 82 (2) Students should read the problem. In part (b), students who computed the definite integral had to
- compute f(3). The value of f at x = 3 was given in the problem as $3 \sqrt{5}$, and yet students did not use
- 84 it. Without including this value in the computation of the answer, students did not earn the answer point.
- Again, some students tried to estimate the value of f(3) from the graph as 0.75 or 0.8, but these estimations
- 86 also did not earn the point.
- 87 (3) Students should be discouraged from using the First Derivative Test when confronted with a function on
- a closed interval. In part (c), students had to work very hard to justify the correct maximum when using the
- 89 First Derivative Test, since the correct maximum occurred at an endpoint. The best approach is to list all
- 90 possible critical points, and then compute the function values at those points, and then declare which one
- of those function values is the largest. Students should be practicing extrema problems on closed intervals
- 92 in class. Problems of this type have appeared on recent AP exams, and students should be able to handle
- 93 them.
- 94 (4) Students should read the problem. A remarkably large number of students, even though asked to find
- 95 the maximum in part (c), instead found the minimum, and declared their answer as the minimum.
- 96 (5) Students should avoid arithmetic. Many students had great work for part (a) which did not earn the
- 97 answer point due to sign errors. Unsimplified work is scored by Readers and helps the student avoid such
- 98 errors.
- 99 (6) Students should know simple trigonometric values. In part (d), even though an unsimplified arctan 1
- was shown, many students carried forth and evaluated it, and many of those who evaluted it did so incor-
- rectly as $0, \frac{\pi}{2}, \frac{\sqrt{2}}{2}$, or "undefined". Some indicated that they had never seen "arctan" before. Still other
- students believed that arctan 1 could be equal to either $\frac{\pi}{4}$ or $\frac{5\pi}{4}$, which is incorrect. As this problem was
- only worth one point, any error means that the point was not earned.