A Differential Equation

Marshall Ransom, Georgia Southern University mransom@georgiasouthern.edu
If $\frac{d y}{d x}=x e^{-y}, y=f(x)$, and $f(4)=0$, solve for y. Also, find the domain of $f(x)$.

A Differential Equation

Separate variables: $\quad e^{y} d y=x d x$

Antiderivatives: $\quad e^{y}=\frac{x^{2}}{2}$
GOOD! 1 or 2 pts. for antiderivatives

Attempt \#1: $\quad y=\ln \left(\frac{x^{2}}{2}\right)$
INCORRECT! no use of $+C \ldots \ldots$.
No more points possible

Attempt \#2: $\quad e^{y}=\frac{x^{2}}{2}+C \rightarrow e^{0}=\frac{4^{2}}{2}+C \quad G O O D!\quad 1$ pt. for $+C$ and using $(4,0)$

$$
C=e^{0}-\frac{4^{2}}{2}
$$

$$
e^{y}=\frac{x^{2}}{2}+e^{0}-\frac{4^{2}}{2}
$$

NO MORE Pts. YET............

$$
y=\ln \left(\frac{x^{2}}{2}+e^{0}-\frac{4^{2}}{2}\right)
$$

PERFECT!.. . 1 more point

The domain of the function is all possible values of the independent variable; in this case x is that variable. This often involves excluding values not allowed such as those that require division by zero, that require a square root of a negative number, or, in this case, because of \ln we require that $\frac{x^{2}}{2}+e^{0}-\frac{4^{2}}{2}>0$. Solving for x we get $x^{2}>14 \rightarrow x<-\sqrt{14}$ or $x>\sqrt{14}$. However, the solution to a differential equation with initial condition requires that the value of x for that initial condition point be in the domain. We must choose $x>\sqrt{14}$ for the domain since $x=4$ is in that interval. NOTE that this is a lot of work solving for y for one point and a lot of work and thinking for the domain. I recommend postponing such work until all the easier questions on the exam have been answered.

