A Differential Equation

Marshall Ransom, Georgia Southern University mransom@georgiasouthern.edu If $\frac{dy}{dx} = xe^{-y}$, y = f(x), and f(4) = 0, solve for y. Also, find the domain of f(x).

A Differential Equation

Marshall Ransom, Georgia Southern University mransom@georgiasouthern.edu If $\frac{dy}{dx} = xe^{-y}$, y = f(x), and f(4) = 0, solve for y. Also, find the domain of f(x).

Separate variables:	$e^{y}dy = xdx$	GOOD! 1 pt. for separation
Antiderivatives:	$e^{y} = \frac{x^{2}}{2}$	<i>GOOD!</i> 1 or 2 pts. for antiderivatives
Attempt #1:	$y = \ln\left(\frac{x^2}{2}\right)$	<i>INCORRECT!</i> no use of + <i>C</i> No more points possible
Attempt #2:	$e^{y} = \frac{x^{2}}{2} + C \rightarrow e^{0} = \frac{4^{2}}{2} + C$	GOOD! 1 pt. for $+ C$ and using (4, 0)
	$C = e^0 - \frac{4^2}{2}$	NO MORE Pts. YET
	$e^{y} = \frac{x^{2}}{2} + e^{0} - \frac{4^{2}}{2}$	NO MORE Pts. YET
	$y = \ln\left(\frac{x^2}{2} + e^0 - \frac{4^2}{2}\right)$	PERFECT!1 more point

The domain of the function is all possible values of the independent variable; in this case x is that variable. This often involves *excluding* values not allowed such as those that require division by zero, that require a square root of a negative number, or, in this case, because of ln we *require* that $\frac{x^2}{2} + e^0 - \frac{4^2}{2} > 0$. Solving for x we get $x^2 > 14 \rightarrow x < -\sqrt{14}$ or $x > \sqrt{14}$. However, the solution to a differential equation with initial condition requires that the value of x for that initial condition point be in the domain. We must choose $x > \sqrt{14}$ for the domain since x = 4 is in that interval. NOTE that this is a lot of work solving for y for one point and a lot of work and thinking for the domain. I recommend postponing such work until all the easier questions on the exam have been answered.