Group Names: \qquad

Georgia-Florida Football Rivalry Problem Set P-Hacking and Pitfalls of P-Values

The data below show the result of each game in the Georgia-Florida football rivalry from 1904 to 2015. Use this information to proceed through this problem set.

Year	Winner	Year	Winner	Year	Winner
1904	Georgia	1954	Georgia	1986	Florida
1915	Georgia	1955	Florida	1987	Georgia
1916	Georgia	1956	Florida	1988	Georgia
1919	Georgia	1957	Florida	1989	Georgia
1920	Georgia	1958	Florida	1990	Florida
1926	Georgia	1959	Georgia	1991	Florida
1927	Georgia	1960	Florida	1992	Florida
1928	Florida	1961	Florida	1993	Florida
1929	Florida	1962	Florida	1994	Florida
1930	TIE	1963	Florida	1995	Florida
1931	Georgia	1964	Georgia	1996	Florida
1932	Georgia	1965	Florida	1997	Georgia
1933	Georgia	1966	Georgia	1998	Florida
1934	Georgia	1967	Florida	1999	Florida
1935	Georgia	1968	Georgia	2000	Florida
1936	Georgia	1969	TIE	2001	Florida
1937	Florida	1970	Florida	2002	Florida
1938	Georgia	1971	Georgia	2003	Florida
1939	Georgia	1972	Georgia	2004	Georgia
1940	Florida	1973	Florida	2005	Florida
1941	Georgia	1974	Georgia	2006	Florida
1942	Georgia	1975	Georgia	2007	Georgia
1944	Georgia	1976	Georgia	2008	Florida
1945	Georgia	1977	Florida	2009	Florida
1946	Georgia	1978	Georgia	2010	Florida
1947	Georgia	1979	Georgia	2011	Georgia
1948	Georgia	1980	Georgia	2012	Georgia
1949	Florida	1981	Georgia	2013	Georgia
1950	Georgia	1982	Georgia	2014	Florida
1951	Georgia	1983	Georgia	2015	Florida
1952	Florida	1984	Florida		
1953	Florida	1985	Georgia		

\qquad

1. Start by examining the results of the first 30 games of the rivalry (from 1904 to 1951). Which team appears to be superior?

Superior team: \qquad
2. Suppose we want to examine if there is statistically significant evidence showing one team is superior to the other. Give the appropriate null and alternative hypotheses. (Hint: For the Null Hypothesis, what would the proportion of wins be for Georgia if two teams were evenly matched. Use a two-tailed one-proportion z-test.)

Let $\mathrm{p}=$ The proportion of games won by UGA
H_{0} : \qquad
H_{a} : \qquad
3. Calculate the proportion of games won by Georgia in this 30 -year period. This will be the sample proportion.
\hat{p} : \qquad
4. Assume the conditions for a 1-proprtion Z-test are met. Take a standard deck of playing cards and shuffle several times. Let the red cards represent Georgia wins, and let the black cards represent Georgia loses. Deal out 30 cards and count the number of Georgia wins (red cards). Calculate the proportion of Georgia wins. Repeat until you have a total of 10 proportions. Record those below.
5. Place your 10 proportions along with your classmates' on the dotplot on the board in the classroom. What proportion of dots on the dotplot were at the sample proportion ($\hat{\mathrm{p}}$) or higher? Because this is a two-tailed test, double this proportion and this will be our simulated p-value.
6. Interpret the simulated p-value from above.
\qquad
7. Use your p-value to make a conclusion about the Georgia-Florida rivalry based off of this sample of the first 30 games.
8. One or more of the conditions for a 1-Proportion Z test were not met. Explain.
9. Do you feel that the conclusion from number 7 is valid? Why or why not?
10. Is it possible to get a random sample like this one where Georgia wins 24 of 30 games?
11. Now examine the results of the last 30 games of the rivalry (from 1986 to 2015). Which team appears to be superior?

Superior team:
12. Again, we want to see if there is statistically significant evidence showing one team is superior to the other. Give the appropriate null and alternative hypotheses. (Hint: For the Null Hypothesis, what would the proportion of wins be for Georgia if two teams were evenly matched. Use a two-tailed one-proportion z-test.)

Let $\mathrm{p}=$ The proportion of games won by Georgia
H_{0} : \qquad
H_{a} : \qquad
\qquad
13. Calculate the proportion of games won by Georgia in this 30-year period. This will be the sample proportion.
\hat{p} : \qquad
14. Assume the conditions for a 1-proprtion Z-test are met. Look at the previously constructed dotplot on the board in the classroom. What proportion of dots on the dotplot were at the sample proportion ($\hat{\mathrm{p}}$) or higher? Because this is a two-tailed test, double this proportion and this will be our simulated p-value.
15. Interpret the simulated p-value from above.
16. Use your p-value to make a conclusion about the Georgia-Florida rivalry based off of this sample of the last 30 games.
17. Do you feel that the conclusion from number 16 is valid? Why or why not?
18. Is it possible to get a random sample like this one where Florida wins 21 of 30 games?
19. Compare and contrast the results of this sample and the first sample.
\qquad
20. Now use technology to generate a simple random sample of 30 games from the rivalry. The games haven been numbered in the table below.

Year	Winner	Year	Winner	Year	Winner
$1904(1)$	Georgia	$1954(33)$	Georgia	$1986(65)$	Florida
$1915(2)$	Georgia	$1955(34)$	Florida	$1987(66)$	Georgia
$1916(3)$	Georgia	$1956(35)$	Florida	$1988(67)$	Georgia
$1919(4)$	Georgia	$1957(36)$	Florida	$1989(68)$	Georgia
$1920(5)$	Georgia	$1958(37)$	Florida	$1990(69)$	Florida
$1926(6)$	Georgia	$1959(38)$	Georgia	$1991(70)$	Florida
$1927(7)$	Georgia	$1960(39)$	Florida	$1992(71)$	Florida
$1928(8)$	Florida	$1961(40)$	Florida	$1993(72)$	Florida
$1929(9)$	Florida	$1962(41)$	Florida	$1994(73)$	Florida
$1930(10)$	TIE	$1963(42)$	Florida	$1995(74)$	Florida
$1931(11)$	Georgia	$1964(43)$	Georgia	$1996(75)$	Florida
$1932(12)$	Georgia	$1965(44)$	Florida	$1997(76)$	Georgia
$1933(13)$	Georgia	$1966(45)$	Georgia	$1998(77)$	Florida
$1934(14)$	Georgia	$1967(46)$	Florida	$1999(78)$	Florida
$1935(15)$	Georgia	$1968(47)$	Georgia	$2000(79)$	Florida
$1936(16)$	Georgia	$1969(48)$	TIE	$2001(80)$	Florida
$1937(17)$	Florida	$1970(49)$	Florida	$2002(81)$	Florida
$1938(18)$	Georgia	$1971(50)$	Georgia	$2003(82)$	Florida
$1939(19)$	Georgia	$1972(51)$	Georgia	$2004(83)$	Georgia
$1940(20)$	Florida	$1973(52)$	Florida	$2005(84)$	Florida
$1941(21)$	Georgia	$1974(53)$	Georgia	$2006(85)$	Florida
$1942(22)$	Georgia	$1975(54)$	Georgia	$2007(86)$	Georgia
$1944(23)$	Georgia	$1976(55)$	Georgia	$2008(87)$	Florida
$1945(24)$	Georgia	$1977(56)$	Florida	$2009(88)$	Florida
$1946(25)$	Georgia	$1978(57)$	Georgia	$2010(89)$	Florida
$1947(26)$	Georgia	$1979(58)$	Georgia	$2011(90)$	Georgia
$1948(27)$	Georgia	$1980(59)$	Georgia	$2012(91)$	Georgia
$1949(28)$	Florida	$1981(60)$	Georgia	$2013(92)$	Georgia
$1950(29)$	Georgia	$1982(61)$	Georgia	$2014(93)$	Florida
$1951(30)$	Georgia	$1983(62)$	Georgia	$2015(94)$	Florida
$1952(31)$	Florida	$1984(63)$	Florida		
$1953(32)$	Florida	$1985(64)$	Georgia		
192					

\qquad
21. Suppose we want to see if there is statistically significant evidence showing one team is superior to the other. Give the appropriate null and alternative hypotheses. (Hint: For the Null Hypothesis, what would the proportion of wins be for Georgia if two teams were evenly matched. Use a two-tailed one-proportion z-test.)

Let $\mathrm{p}=$ The proportion of games won by Georgia
H_{0} : \qquad
H_{a} : \qquad
22. Calculate the proportion of games won by Georgia in the simple random sample. Once again, this will be our sample proportion.
\hat{p} : \qquad
23. Assume the conditions for a 1-proprtion Z-test are met. Look at the previously constructed dotplot on the board in the classroom. What proportion of dots on the dotplot were at the sample proportion (\hat{p}) or higher? Because this is a two-tailed test, double this proportion and this will be our simulated p-value.
24. Interpret the simulated p-value from above.
25. Are all of the conditions for a 1-Proportion Z-test met? Explain.
\qquad
26. Use your p-value to make a conclusion about the Georgia-Florida rivalry based off of this random sample of 30 games.
27. Does this conclusion differ from your previous two conclusions? If so, how does it differ?
28. So far you have looked at three different samples of 30 games from the rivalry. Now examine the results of all 94 games. Calculate the proportion of games won by Georgia in this 94 -year period. This will be the sample proportion.
\hat{p} : \qquad
29. Suppose we want to examine if there is statistically significant evidence showing one team is superior to the other. Give the appropriate null and alternative hypotheses. (Hint: For the Null Hypothesis, what would the proportion of wins be for Georgia if two teams were evenly matched. Use a two-tailed one-proportion z-test.)

Let $\mathrm{p}=$ The proportion of games won by Georgia
H_{0} : \qquad
H_{a} : \qquad
30. Assume the conditions for a 1-proprtion Z-test are met. Calculate the z -score and p-value for these 94 games.
z-score: \qquad
p-value: \qquad
\qquad
31. Use your p-value to make a conclusion to determine if one team is superior in the GeorgiaFlorida rivalry based off of this sample of 94 games.
32. Type I Error is defined to be incorrectly rejecting the null hypothesis. It is possible to collect a sample that leads to statistically significant results in error. Which of the first 3 samples in this activity are examples of Type I Error? Also, explain Type I Error in the context of this problem.
33. Reflect on the different results the came from these four data sets and their resulting p values. What does this reveal about statistical significance, p-values, and errors in conclusions based off of sampling?

