Problem Overview:

Students are given a velocity vector $\left(\cos \left(t^{2}\right), e^{0.5 t}\right)$ for a particle in motion along a curve in the $x y$-plane. The position of the particle is $(x(t), y(t))$; and at time $t=1$, the particle is at the point $(3,5)$.

Part a:

Students were asked to find the x-coordinate of the position of the particle at time $t=2$.

Part b:

Students were told that for $0<t<1$, there is a point on the curve where the line tangent to the curve has a slope of 2. Students were asked to find the time the object is at that point.

Part c:

Students were asked to find the time when the object has a speed of 3 .

Part d:

This part asked students to calculate the total distance traveled from time $t=0$ to time $t=1$.

Comments on Scoring:

Part a:

To answer this part of the question, students had to use an integral along with the initial condition $x(1)=3$. The first of three points was for a definite integral, correctly using 2 as in $\int_{A}^{2} \cos t^{2}$ (students not being penalized for a missing differential). The second point is for "using" the initial condition. This required correct use of both facts $t=1$ and $x=3$. Thus $3+\int_{0}^{2} \cos \left(t^{2}\right) d t$ earned the integral point but not the point for using the initial condition because of the 0 as the lower limit rather than $1 . \int_{1}^{2} \cos t^{2}+3$ earned neither of the first two points because in this setup, the missing differential creates an ambiguous situation. $\int_{1}^{2} \cos t^{2} d t+3=2.557$ (or 2.556) earned both of the first two points and the third, answer, point as well.

Part b:

Students needed to show use of $\frac{y^{\prime}(t)}{x^{\prime}(t)}$ with the given velocity components declared (slope had to be shown in terms of t). Thus the mere presence of $\frac{y^{\prime}(t)}{x^{\prime}(t)}$ in the absence of a connection to $\left(\cos \left(t^{2}\right), e^{0.5 t}\right)$ did not earn the first of two points in this part of the problem. The statement " $\frac{e^{0.5 t}}{\cos \left(t^{2}\right)}$ and $t=0.84$ " earned only the first point and not the answer point because the equation $\frac{e^{0.5 t}}{\cos \left(t^{2}\right)}=2$ had to be shown in order to indicate where the value 0.84 came from. In this calculator active problem, showing this equation amounts to "show your work."

Part c:

This part was graded using the same philosophy as in part b. Students had to show the speed in terms of t and if using $\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}$ had to show the connection to $\left(\cos \left(t^{2}\right), e^{0.5 t}\right)$. Again, in order to earn the answer point, students had to show the equation that leads to that answer. In this part, the equation is $\sqrt{\cos ^{2}\left(t^{2}\right)+e^{t}}=3$. There were two points in part c , the second for the answer either $t=2.196$ or 2.197.

Part d:

The first point was for a definite integral of the speed which could be an error imported from part c provided it was of the form $\sqrt{\text { trig }^{2}+\exp ^{2}}$. Importing such an error made the student ineligible for the answer point.
The correct form is $\int_{0}^{1} \sqrt{\cos ^{2}\left(t^{2}\right)+e^{t}} d t$. The answer point was awarded for either $t=1.595$ or 1.594.

Observations and recommendations for teachers:

(1) Calculating a result, given an initial condition and using a definite integral of a rate of change, is a fundamental concept irrespective of motion of a particle. Underlying this is use of the fundamental theorem given by $\int_{c}^{d} f(x) d x=A(d)-A(c)$ in the form $A(d)=A(c)+\int_{c}^{d} f(x) d x$ where A is an antiderivative of f. As discussed above, correct use of a differential is important.
(2) Motion with position given by $(x(t), y(t))$ identifies a curve that is the path the particle follows while in motion. A brief background in curves defined parametrically, including that slope of a line tangent to such a curve is given by $\frac{d y / d t}{d x / d t}$, is a skill that can be discussed without getting into particle motion.
(3) Speed of a motion is given by $|v(t)|$. In two dimensions, v is the vector $\vec{v}(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ and we have $|v(t)|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}$. Total distance traveled is the definite integral of speed, something that has to be reinforced and practiced in class. $\int_{t_{1}}^{t_{2}}|v(t)| d t$ has the same meaning in 1 dimension as in 2 (or 3?). Contrast this with displacement (the net change in position) given by $\int_{t_{1}}^{t_{2}} v(t) d t$.

