MATH 2242 Taylor Series ("Maclaurin" Series if centered at 0)

A Taylor series is a power series which can be derived for a function which has derivatives of all orders. The key is knowing how to calculate the coefficient of each term.

Example 1: The Taylor series centered at 0 (therefore sometimes called a "Maclaurin" series) for the famous function e^{x} is $1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$. We can clearly see the powers of x. How are the coefficients derived?? If we start counting at $k=0$ we have $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.

The coefficients are found using derivatives of e^{x} evaluated at 0 and, as you can see, factorials dividing.
If $f(x)=e^{x}$, then $f^{\prime}(x)=e^{x}, f^{\prime \prime}(x)=e^{x}, f^{(3)}(x)=e^{x}, f^{(4)}(x)=e^{x}$, etc.(what a friendly function!!!!) Since the center is 0 , we evaluate each of these at $x=0$ and get $e^{0}=1$. Any coefficient can be calculated by taking $e^{0}=1$ and dividing by the appropriate factorial (which in number always matches the power of x).

Thus a formula for the coefficient of x^{n} is $\frac{f^{(n)}(0)}{n!}$. That's all there is to it !!!

Example 2: Derive a Taylor series for $\sin (x)$ centered at 0 . (This is the "Maclaurin" series for $\sin (x)$).
First we calculate some derivatives of $f(x)=\sin (x)$ and then we substitute 0 for x :

$$
\begin{aligned}
& f^{(0)}(x)=\sin (x) \rightarrow f^{(0)}(0)=\sin (0)=0 \\
& f^{(1)}(x)=\cos (x) \rightarrow f^{(1)}(0)=\cos (0)=1 \\
& f^{(2)}(x)=-\sin (x) \rightarrow f^{(2)}(0)=-\sin (0)=0 \\
& f^{(3)}(x)=-\cos (x) \rightarrow f^{(3)}(0)=-\cos (0)=-1 \\
& f^{(4)}(x)=\sin (x) \rightarrow f^{(4)}(0)=\sin (0)=0
\end{aligned}
$$

Can you see a pattern? Can we stop ????

Now to construct the series: for example, the coefficient of x^{3} is $\frac{f^{(3)}(0)}{3!}=\frac{-1}{3!}$.
Notice that the coefficients for all the even powers of x are 0 . Use these with matching powers of x.

Therefore, $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}$

Example 3: We have already seen Taylor series for $\sin (x)$ centered at 0 . Since $\cos (x)$ is the derivative of $\sin (x)$, we can take the derivatives of the terms in Example 2:

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}
$$

A series at a non-zero center is derived similarly using derivatives and factorials.
Example 4: Derive a series for $\sin (x)$ centered at $x=\frac{\pi}{6}$.
We need derivatives evaluated at $\frac{\pi}{6}$, factorials, and this time powers of $\left(x-\frac{\pi}{6}\right)$. We ALWAYS use (x-center).

$$
\begin{aligned}
& f^{(0)}(x)=\sin (x) \rightarrow f^{(0)}\left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \\
& f^{(1)}(x)=\cos (x) \rightarrow f^{(1)}\left(\frac{\pi}{6}\right)=\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\
& f^{(2)}(x)=-\sin (x) \rightarrow f^{(2)}\left(\frac{\pi}{6}\right)=-\sin \left(\frac{\pi}{6}\right)=-\frac{1}{2} \\
& f^{(3)}(x)=-\cos (x) \rightarrow f^{(3)}\left(\frac{\pi}{6}\right)=-\cos \left(\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2} \\
& f^{(4)}(x)=\sin (x) \rightarrow f^{(4)}\left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}
\end{aligned}
$$

Can you see a pattern? Can we stop ????

Now to construct the series: for example, the coefficient of $\left(x-\frac{\pi}{6}\right)^{3}$ is $\frac{f^{(3)}\left(\frac{\pi}{6}\right)}{3!}=\frac{-\frac{\sqrt{3}}{2}}{3!}=-\frac{\sqrt{3}}{2 \cdot 3!}$.
Thus the series is $\frac{1}{2}+\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)-\frac{1}{2 \cdot 2!}\left(x-\frac{\pi}{6}\right)^{2}-\frac{\sqrt{3}}{2 \cdot 3!}\left(x-\frac{\pi}{6}\right)^{3}+\frac{1}{2 \cdot 4!}\left(x-\frac{\pi}{6}\right)^{4} \ldots \ldots$

If we calculate the derivative of this series, what do we get and what function does this series represent?

1. Calculate the first 5 terms of a Taylor series for $\ln (x)$ centered at 1 . Use this result to write the first 5 terms of a series for $\frac{\ln (x)}{x}$.
2. Calculate the first 4 non-zero terms of a Taylor series for $\cos (x)$ centered at $x=\frac{\pi}{4}$.
3. A Maclaurin series for a function $f(x)$ is given by $f(x)=2 x^{2}-\frac{x^{4}}{2!}+\left(\frac{1}{4!}-\frac{1}{3!}\right) x^{6}-\frac{x^{8}}{6!} \cdots \cdots$.

Calculate the value of the $6^{\text {th }}$ derivative of f at $x=0$ (that is, calculate $f^{(6)}(0)$).

