
MATH  2242   Taylor Series  (“Maclaurin”  Series if centered at  0) 
 
A Taylor series is a power series which can be derived for a function which has derivatives of all orders.  
The key is knowing how to calculate the coefficient of each term. 
 
Example 1: The Taylor series centered at  0  (therefore sometimes called a “Maclaurin” series) for the 

famous function  
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x x x xe x+ + + + + ⋅⋅⋅ .    We can clearly see the powers of  x.  How are the 

coefficients derived??   If we start counting at  k = 0  we have  
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The coefficients are found using derivatives of  xe  evaluated at  0  and, as you can see, factorials dividing. 
 
If  (3) (4)( ) , then  ( ) , ( ) , ( ) , ( ) , etc.x x x x xf x e f x e f x e f x e f x e′ ′′= = = = = ….(what a friendly function!!!!) 
Since the center is  0, we evaluate each of these at  x = 0 and get 0 1e = .   Any coefficient can be calculated 
by taking 0 1e =  and dividing by the appropriate factorial (which in number always matches the power of  x). 
 

Thus a formula for the coefficient of  
( ) (0)is  

!

n
n fx

n
.    That’s all there is to it !!! 

 
 
Example 2: Derive a Taylor series for  sin(x)  centered at  0.     (This is the “Maclaurin” series for sin(x) ). 
 
First we calculate some derivatives of ( ) sin( )f x x=  and then we substitute  0  for  x: 
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Can you see a pattern?   ????
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Now to construct the series:    for example, the coefficient of  
(3)

3 (0) 1is  
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Notice that the coefficients for all the even powers of  x  are  0.   Use these with matching powers of  x. 
 
 

Therefore,  
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Example 3: We have already seen Taylor series for sin(x) centered at  0.   Since cos(x) is the derivative of 
sin(x), we can take the derivatives of the terms in Example 2: 
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A series at a non-zero center is derived similarly using derivatives and factorials. 

Example 4: Derive a series for sin(x) centered at 
6

x π
= . 

 

We need derivatives evaluated at 
6
π , factorials, and this time powers of  

6
x π⎛ ⎞−⎜ ⎟

⎝ ⎠
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    We  ALWAYS  use  ( )x center− . 
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Can you see a pattern?   ????
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Now to construct the series:     for example, the coefficient of   
( )(3)3 3

6 2 3is  
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Thus the series is   
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If we calculate the derivative of this series, what do we get and what function does this series represent? 
 
 
 
 
 
 
 
 



 
1.   Calculate the first 5 terms of a Taylor series for  ln(x)  centered at  1.    Use this result to write the first 5 

terms of a series for ln( )x
x

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.   Calculate the first 4 non-zero terms of a Taylor series for  cos(x)  centered at 
4

x π
= . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.   A Maclaurin series for a function  
4 8

2 61 1( ) is given by  ( ) 2
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Calculate the value of the 6th derivative of  f  at  x = 0  (that is, calculate (6) (0)f ). 


