I. A geometric series is formed by adding terms starting with a_{1} then $a_{1} r, a_{1} r^{2}, a_{1} r^{3}$, etc. We know that if $-1<r<1$ there is a finite "infinite sum" given by $S_{\infty}=\frac{\text { first term }}{1-r}=\frac{a_{1}}{1-r}$.

Example 1: The fraction $\frac{1}{1-x}$ can be thought of as a geometric series with $a_{1}=1$ and $r=x$. We can write $\frac{1}{1-x}=\frac{\text { first term }}{1-r}=1+x+x^{2}+x^{3}+x^{4}+\cdots=\sum_{n=0}^{\infty} x^{n}$.

This is an example of a power series which is a sum of whole number powers of x with coefficients: $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} c_{n} x^{n}$ centered at $a=0$. Where is a ???....... not showing because it's 0.

The series $c_{0}+c_{1}(x-2)+c_{2}(x-2)^{2}+c_{3}(x-2)^{3}+\cdots=\sum_{n=0}^{\infty} c_{n}(x-2)^{n} \quad$ is also a power series. This one is centered at $a=2$.

Example 2: What about a power series for $\frac{1}{1-3 x}$? We can use $a_{1}=1$ and $r=3 x$.
Or we can use $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots$ from example 1 and substitute $3 x$ for x.
The result is $\frac{1}{1-3 x}=1+3 x+(3 x)^{2}+(3 x)^{3}+(3 x)^{4}+\cdots=1+3 x+9 x^{2}+27 x^{3}+81 x^{4}+\cdots=\sum_{n=0}^{\infty} 3^{n} x^{n}$

For what values of x does this series converge (have a finite infinite sum)? We must have $|r|<1$ because this is a geometric power series. Therefore $-1<3 x<1 \rightarrow-\frac{1}{3}<x<\frac{1}{3}$.

If x is any other value than those in the interval $-\frac{1}{3}<x<\frac{1}{3}$, we cannot guarantee convergence.
Therefore, it is not really true that $\frac{1}{1-3 x}=1+3 x+(3 x)^{2}+(3 x)^{3}+(3 x)^{4}+\cdots$ unless $-\frac{1}{3}<x<\frac{1}{3}$.
II. Not only can we substitute into a known series to create a new one, we can also do some calculus which means we can either integrate or differentiate the terms. This leads to some interesting, more complicated, and NOT geometric series.

Example 3: $\frac{1}{1+x}=\frac{1}{1-(-x)}=\frac{\text { first term }}{1-r}$ which means that $a_{1}=1$ and $r=-x$. We start with 1 and multiply by $-x$ to produce the series $\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$.
(NOTE: This only converges if $|r|<1$ which means that $-1<x<1$ and therefore $1+x>0$.)

Now we use this information and $\int \frac{1}{1+x} d x=\ln (1+x)+C$ to produce a power series for $\ln (1+x)$ $\int \frac{1}{1+x} d x=\int\left(1-x+x^{2}-x^{3}+x^{4}+\cdots\right) d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{n} d x$. This gives us a new power series for $\ln (1+x)$: $\ln (1+x)=\int \frac{1}{1+x} d x=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1} \quad$ (And, oh yeah. $\ldots .$. .there's a $+C$ somewhere).

Now we know that $\ln (x+1)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$
NOTES: (i) This is NOT geometric....... there is no r value
(ii) We do not need absolute value for the \ln because $1+x>0$

Other important series which are NOT geometric such as $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$ must be derived using a different method than that in example 3 above. We will call these "Taylor Series" and show how to derive them for functions such as $\sin (x)$ and $\cos (x)$ using derivatives.

Class discussion: Using geometric series properties and some calculus,..........

1. (a) Produce a series for $\frac{1}{1+x^{2}}$ by finding a_{1} and r.
(b) Use your result in part (a) and some calculus to find a power series for $\tan ^{-1}(x)$.
(c) What is a general term for the series in part (a)? Use this to get a general term for the series calculated in part (b).
2. (a) Given that $e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$ as stated above, find a power series for e^{-x}.
(b) What is a power series for $e^{x}+e^{-x}$? $e^{x}-e^{-x}$?
(c) What is a general term, starting at $n=0$, for your series in parts (a) and (b) above?
3. Using the series for e^{x} in \#2a above, find a series for
[NOTE: we will use some substitution, some calculus, or both].
$e^{2 x}$

$$
e^{(x-1)}
$$

$$
e^{(x-1)^{2}}
$$

$$
\int e^{(x-1)^{2}} d x
$$

3. The power series for $\cos (x)$ is $\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!}$.
(This is the Taylor Series centered at $a=0$ also known as the MacLaurin series because of 0 as the center).
(a) Using some calculus, derive a series for $\sin (x)$.
(b) Using substitution, derive a series for $\sin (3 x)$ and $\cos (3 x)$.
(c) How could we get a series for $\sin (3 x) \cos (3 x)$??
