Summary of important concepts

§

[1] <u>Polar Coordinates</u> are used to plot points on a rectangular coordinate system. The two coordinates give the distance from the Origin (the pole) and the angle  $\theta$  with respect to the positive *x*-axis. Because *r* is used to describe the distance from the pole, we have the following:

 $r^2 = x^2 + y^2$ ,  $x = r \cos \theta$ ,  $y = r \sin \theta$ , and  $\theta = \tan^{-1} \left(\frac{y}{x}\right)$  (Check Quadrant for  $\theta$ )

**Example 1:** The polar coordinates  $\left(2, \frac{\pi}{6}\right)$  are coordinates for the point  $\left(2\cos\left(\frac{\pi}{6}\right), 2\sin\left(\frac{\pi}{6}\right)\right) = \left(\sqrt{3}, 1\right)$ .

**Example 2:** The polar coordinates  $\left(-2, \frac{\pi}{6}\right)$  locate the point "backwards" from the direction  $\theta = \frac{\pi}{6}$ . When *r* is negative, we "aim" in the direction of the given  $\theta$  but move "backwards" from the Origin. Add  $\pi$  to  $\theta$ : this point is found in Quadrant III and is the same as the polar point  $\left(2, \pi + \frac{\pi}{6}\right) = \left(2, \frac{7\pi}{6}\right)$ . The rectangular coordinates are  $\left(-2\cos\left(\frac{\pi}{6}\right), -2\sin\left(\frac{\pi}{6}\right)\right) = \left(-\sqrt{3}, -1\right)$  which is in Quadrant III.

**Example 3:** Given rectangular coordinates  $\left(-2, 2\sqrt{3}\right)$ , we have a point in Quadrant II. Thus the angle  $\theta$  is such that  $\frac{\pi}{2} < \theta < \pi$ . The angle  $\theta = \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(-\sqrt{3}\right) = -\frac{\pi}{3}$ . Since this is not in Quadrant II, we use  $\theta = -\frac{\pi}{3} + \pi = \frac{2\pi}{3}$  which IS in Quadrant II.

We can easily find  $r = \sqrt{(-2)^2 + (2\sqrt{3})^2} = 4$ .

[2] <u>Equations in Polar Coordinates</u>: Polar equations are often useful in expressing curves which are not functions of x. As a result, simple functions of x sometimes look complicated in polar coordinates, while very complicated expressions involving x and y can be elegantly expressed using polar coordinates.

**Example 1:** The line 2x + y = 3 becomes  $2r \cos \theta + r \sin \theta = 3 \rightarrow r = \frac{3}{2\cos \theta + \sin \theta}$ . **Example 2:** The four loops defined by  $r = 3\sin(2\theta)$ cannot be expressed as one function of x. The graph is at right. Notice that the graph does not pass the vertical line test. If we multiply both sides by  $r^2$  we get the following:  $r^3 = 3r^2 \sin(2\theta) = 3r^2 (2\cos\theta\sin\theta) = 6r\cos\theta r\sin\theta$ This is equivalent to  $(\pm \sqrt{x^2 + y^2})^3 = 6xy$ .

(NOTE that  $\pm$  is needed in order to account for points in Quadrants II and IV where only one of x or y is negative. This accounts for different points when r is negative.)



Obviously this would be difficult to plot using the rectangular coordinate expression.

## [1] Graphing using polar coordinates:

Another look at  $r = 3\sin(2\theta)$  and this time we plot some points (shown on the graph at right). Notice that if  $\theta = \frac{\pi}{4}$ , we have r = +3, but

if  $\theta = -\frac{\pi}{4}$ , we have r = -3 which locates the point in Quadrant II rather than IV. (We "aim" at  $\theta = -\frac{\pi}{4}$  but go "backwards" from the Origin into Quadrant II because *r* is negative).

The entire graph can be generated on a graphing calculator using either  $-\pi < \theta < \pi$  or  $0 < \theta < 2\pi$ .



A table of values of *r* for some special values of  $\theta$ is shown at right. The points for which  $0 < \theta < \frac{\pi}{2}$ trace the loop in Quadrant I. Notice that for  $\frac{\pi}{2} < \theta < \pi$  the values of *r* are negative. These points trace the loop in Quadrant IV because *r* is negative, locating the point "backwards" from the original values of  $\theta$  which are in Quadrant II.

In order to plot the points defining the loops in Quadrants II and III, we use values of  $\pi < \theta < 2\pi$ . These values are not shown in the table.

Notice in the table that values for both  $\theta$  and  $2\theta$  are given. Be certain to plot points based only on the values of  $\theta$ . The values of  $2\theta$  are shown to facilitate calculations for  $r = 3\sin(2\theta)$ .

In order to plot the **entire curve** in polar coordinates, be certain to examine all values for  $0 < \theta < 2\pi$ .

| $r = 3\sin(2\theta)$                                                                                                                                  | heta                                                                                 | $2\theta$                                                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| 0                                                                                                                                                     | 0                                                                                    | 0                                                                                       |  |
| $\frac{3}{2}$                                                                                                                                         | $\frac{\pi}{12}$                                                                     | $\frac{\pi}{6}$                                                                         |  |
| $     \frac{\frac{3}{2}}{\frac{3\sqrt{3}}{2}}     3     \frac{\frac{3\sqrt{3}}{2}}{\frac{3\sqrt{3}}{2}}     \frac{\frac{3\sqrt{3}}{2}}{\frac{3}{2}} $ | $\frac{\pi}{6}$                                                                      | $\frac{\pi}{3}$                                                                         |  |
| 3                                                                                                                                                     | $\frac{\pi}{4}$                                                                      | $\frac{\pi}{2}$                                                                         |  |
| $\frac{3\sqrt{3}}{2}$                                                                                                                                 | $\frac{\pi}{3}$                                                                      | $\frac{\frac{\pi}{2}}{\frac{2\pi}{3}}$ $\frac{5\pi}{6}$                                 |  |
| $\frac{3}{2}$                                                                                                                                         | $\frac{5\pi}{12}$                                                                    | $\frac{5\pi}{6}$                                                                        |  |
| 0                                                                                                                                                     | $\frac{\pi}{2}$                                                                      | $\pi$                                                                                   |  |
| $-\frac{3}{2}$                                                                                                                                        | $\frac{7\pi}{12}$                                                                    | $\frac{7\pi}{6}$                                                                        |  |
| $-\frac{3}{2}$ $-\frac{3\sqrt{3}}{2}$                                                                                                                 | $     \frac{\frac{7\pi}{12}}{\frac{2\pi}{3}}     \frac{3\pi}{4}     \frac{5\pi}{6} $ | $     \frac{\frac{7\pi}{6}}{\frac{4\pi}{3}}     \frac{\frac{3\pi}{2}}{\frac{5\pi}{3}} $ |  |
| -3                                                                                                                                                    | $\frac{3\pi}{4}$                                                                     | $\frac{3\pi}{2}$                                                                        |  |
| $-3$ $-\frac{3\sqrt{3}}{2}$ $-\frac{3}{2}$                                                                                                            | $\frac{5\pi}{6}$                                                                     | $\frac{5\pi}{3}$                                                                        |  |
| $-\frac{3}{2}$                                                                                                                                        | $\frac{11\pi}{12}$                                                                   | $\frac{\frac{11\pi}{6}}{2\pi}$                                                          |  |
| 0                                                                                                                                                     | π                                                                                    | $2\pi$                                                                                  |  |

Suppose that  $r^2 = \cos(2\theta)$ . Since  $r = \pm \sqrt{\cos(2\theta)}$ , the values of r can only be found from positive values of  $\cos(2\theta)$ , where the values of  $\theta$  are  $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$ ,  $\frac{3\pi}{4} < \theta < \frac{5\pi}{4}$ , etc. There are no values of r for  $\frac{\pi}{4} < \theta < \frac{3\pi}{4}$ ,  $\frac{5\pi}{4} < \theta < \frac{7\pi}{4}$ , etc.

To plot the curve  $r^2 = \cos(2\theta)$  in polar coordinates, it is sufficient to plot  $r = +\sqrt{\cos(2\theta)}$  for  $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$  and  $\frac{3\pi}{4} < \theta < \frac{5\pi}{4}$  generating the right and left portions of the curve respectively.

(NOTE: when using a graphing calculator, you may have to experiment with small values of " $\theta$ step" in order to plot points near the Origin; also, you should experiment with different values for " $\theta$ max" and " $\theta$ min" to see which generate the right or left parts of the curve).

The complete graph of this <u>lemniscate</u>  $r^2 = \cos(2\theta)$  is shown in the polar graph below. (In *Calculus* by Thomas 12<sup>th</sup> ed., see Example 2 page 633 for a similar graph discussed in more detail).



## More complicated graphing: Example 2

Two graphs are shown below only for  $0 \le \theta \le \pi$  and  $\pi \le \theta \le 2\pi$ . The points A and A' correspond to  $\theta = 0$  and  $\theta = \pi$  respectively. The point E is the same as the point A'.

 $r = 2\cos(\theta) + 1$  for  $0 \le \theta \le \pi$ 

 $r = 2\cos(\theta) + 1$  for  $\pi \le \theta \le 2\pi$ 



Points below are given as  $(r, \theta)$ , and remember that  $x = r\cos(\theta)$  and  $y = r\sin(\theta)$  for rectangular.

- A: Polar (3, 0) Rectangular (3, 0)
- B: Polar  $\left(\sqrt{3}+1, \frac{\pi}{6}\right)$ Rectangular  $\left(\frac{3+\sqrt{3}}{2}, \frac{\sqrt{3}+1}{2}\right)$

The complete graph for  $r = 2\cos(\theta) + 1$ is shown at right. Notice that it is the combination of the graphs above. Some points are the same, but located for different values of  $\theta$ . The complete graph is found using  $0 \le \theta \le 2\pi$ . This curve is called a **limaçon**.

**Exercise:** Find both the polar and rectangular coordinates of the points C, D, E, F, G, and H in the graphs on this page above. Answers are provided below. A': Polar  $(-1, \pi)$ Rectangular (1, 0)

B': Polar 
$$\left(1 - \sqrt{3}, \frac{7\pi}{6}\right)$$
  
Rectangular  $\left(\frac{3 - \sqrt{3}}{2}, \frac{\sqrt{3} - 1}{2}\right)$ 



Answers to exercise on above page:

|       | С                              | D                              | Е          | F                               | G                               | Н           |
|-------|--------------------------------|--------------------------------|------------|---------------------------------|---------------------------------|-------------|
| Polar | $\left(2,\frac{\pi}{3}\right)$ | $\left(1,\frac{\pi}{2}\right)$ | $(-1,\pi)$ | $\left(1,\frac{3\pi}{2}\right)$ | $\left(2,\frac{5\pi}{3}\right)$ | $(3, 2\pi)$ |
| Rect  | $(1,\sqrt{3})$                 | (0,1)                          | (1,0)      | (0,-1)                          | $\left(1,-\sqrt{3}\right)$      | (3,0)       |