Problem Overview:

Students were given the differential equation $\frac{d y}{d x}=2 x-y$.

Part a:

Students were asked to sketch a slope field at six given points on axes provided: on the y-axis at $y=-1,1$ and 2 and for $x=1$ at $y=-1,1$ and 2 .

Part b:

Students had to find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y; then giving a reason for the answer, determine the concavity of all solutions for the differential equation in Quadrant II.

Part c:

Assuming $y=f(x)$ to be a particular solution to the differential equation with the initial condition $f(2)=3$, determine whether f has a relative max, min or neither at the point where $x=2$, and justify this.

Part d:

Assuming $y=m x+b$ is a solution to the differential equation, calculate the values of m and b.

Part a:

The slope field had to show the two negative slopes at $(0,2)$ and $(0,1)$ and one positive slope at $(0,-1)$ for the first point. The second point was earned for a horizontal segment at $(1,2)$ and two positive slopes at the points $(1,1)$ and $(1,-1)$. Points are awarded if the relative steepness is indicated correctly, or at least no worse than by parallel segments.

Part b:

$\frac{d^{2} y}{d x^{2}}$ had to be expressed in terms of x and y. Thus $\frac{d^{2} y}{d x^{2}}=2-\frac{d y}{d x}$ was not sufficient to earn the first point. However, a student with this expression could correctly refer to the signs of x, y, and $\frac{d y}{d x}$ and declare "concave up" and be awarded the second point. The more revealing $\frac{d^{2} y}{d x^{2}}=2-(2 x-y)$ could be verified as positive since $y>0$ and $x<0$ in Quadrant II, and that would justify an answer of "concave up." Mishandling of the negative sign as in $\frac{d^{2} y}{d x^{2}}=2-(2 x-y)=2-2 x-y$ earned the first point but not the second. Starting with $\frac{d^{2} y}{d x^{2}}=2-2 x-y$ did not earn the first point, but this student was eligible for the second point if subsequent work showed use of the actual second derivative.

Part c:

For the first point, students had to be considering $\left.\frac{d y}{d x}\right|_{(2,3)}$ in such a manner as $f^{\prime}(2)=1$ or showing even more arithmetic work that connected $(2,3)$ or the value of 1 to f^{\prime} or $\frac{d y}{d x}$; $2(2)-3$ by itself was considered such a connection and earned the first point. Saying " $2(2)-3 \neq 0$ so neither" earned both points. The second point required "neither" or "no" along with work establishing $f^{\prime} \neq 0$.

Part d:

The philosophy in scoring for the first two points required a connection between the given differential equation and the slope m of the linear solution. This connection could be done minimally by merely asserting that $m=2 x-y$. The third point was for using that connection successfully to get the values of m and b. A few students chose to solve this differential equation either by using an integrating factor (not a topic for AP Calculus) or by using the substitution $u=2 x-y$ which results in a version of the given information that allows a solution for u by separation of variables. These approaches were rarely seen.

Observations and recommendations for teachers:

(1) A slope field showing very few points is not very revealing, making it probably best to practice this with far more than the six points given on this exam. A short line segment is preferred. Relative steepness of the segments is more important than trying to get a good approximation of the actual slope unless that number is very large or very small. Sometimes, rather than asking students to sketch, a more detailed slope field is given as in 2014 AB6. Another example of a slope field to be sketched is seen in 2006 AB5.
(2) An interesting example of calculating a second derivative, given the first, is found in 2004 AB 4. Students need to practice calculating a derivative of a derivative, not merely starting with a polynomial, rational, or trig function, but starting with a given derivative. The second derivative reveals information about concavity, among other things. Verifying the sign of a somewhat awkward second derivative involves algebra and arithmetic skills. Note that students in part (b) had to appeal to signs of x and y in Quadrant II.
(3) It is not wise to send beginning calculus students into the larger world of mathematics believing that extrema only occur where a derivative is equal to zero. In this problem, that was the only possibility, but the teaching of and about extrema should be considered also at points where a derivative does not exist.
(4) This problem is somewhat unique on the AP exam, not because there are questions about a differential equation, but because there is no request for and no need for a solution to that equation. Practice answering questions about a function when information can be determined from a differential equation is essential. Another example, although a solution was ultimately required, is 2012 AB5.

