
MATH 2242               Power Series and more help from  “geometric” 
 
I. A geometric series is formed by adding terms starting with  2 3
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Example 1: The fraction 
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This is an example of a  power series  which is a sum of whole number powers of  x  with coefficients: 
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centered at  a = 2. 
 
 
 
 

Example 2: What about a power series for  
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1 3x
?   We can use  1 1 and  3a r x  . 

Or we can use 2 3 41
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For what values of  x  does this series converge (have a finite infinite sum)?  We must have  1r    because 

this is a geometric power series.   Therefore  
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If  x  is any other value than those in the interval  
1 1

3 3
x   ,  we cannot guarantee convergence.   
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II. Not only can we substitute into a known series to create a new one, we can also do some calculus 
which means we can either integrate or differentiate the terms.   This leads to some interesting, more 
complicated, and NOT geometric series. 
 
 

Example 3: 
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multiply by x  to produce the series  2 3 4
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(NOTE:     This only converges if  1r    which means that  1 1x    and therefore  1 0x  .) 

 
 

Now we use this information and  
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  to produce a power series for  ln(1 + x)   
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Now we know that  
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NOTES: (i)    This is NOT geometric……. there is no  r  value 
  (ii)   We do not need absolute value for the  ln  because 1 0x   
 
 
 
 
 
 
 
 

Other important series which are NOT geometric such as  
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using a different method than that in example 3 above.   We will call these “Taylor Series” and show how to 
derive them for functions such as  sin(x)  and  cos(x)  using derivatives. 
 
 
 
 
 
 
 
 



Class discussion:   Using geometric series properties and some calculus,………. 
 

1. (a)   Produce a series for  
2

1

1 x
  by finding  1 and  a r . 

 
 
 
 
 
 
 
 (b)   Use your result in part (a) and some calculus to find a power series for  1tan ( )x . 
 
 
 
 
 
 
 
 
 (c)   What is a general term for the series in part (a)?   Use this to get a general term for the series 
calculated in part (b). 
 
 
 
 
 
 
 
 

2. (a)   Given that 
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 (b)   What is a power series for ? ...... ?x x x xe e e e    
 
 
 
 
 
 (c)   What is a general term, starting at  n = 0,  for your series in parts (a) and (b) above? 
 
 
 
 



3. Using the series for xe  in #2a above, find a series for  
[NOTE:  we will use some substitution, some calculus, or both]. 
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3. The power series for cos(x) is  
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(This is the Taylor Series centered at  a = 0 also known as the MacLaurin series because of  0  as the center). 
 

(a)   Using some calculus, derive a series for sin(x). 
 
 
 
 
 
 
 (b)   Using substitution, derive a series for sin(3 )x  and cos(3 )x . 
 
 
 
 
 
 
 
 
 (c)   How could we get a series for sin(3 )cos(3 )x x ?? 
 
 
 
 
 
 
 


